1	Draft genome sequence of Cyanobacterium sp. strain IPPAS B-1200 with unique fatty acid
2	composition
3	Alexander Yu. Starikov ^a , Aizhan A. Usserbaeva ^{a,b} , Maria A. Sinetova ^a , Fariza K. Sarsekeyeva ^{a,b} ,
4	Bolatkhan K. Zayadan ^b , Vera V. Ustinova ^c , Elena V. Kupriyanova ^a , Dmitry A. Los ^a , Kirill S.
5	Mironov ^{a*}
6	
7	Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia ^a ; Department of
8	Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University,
9	Almaty, Kazakhstan ^b ; Microbiology Department, Central Tuberculosis Research Institute RAMS,
10	Moscow, Russia ^c ;
11	*Correspondence to Kirill S. Mironov: kirill.mironoff@gmail.com
12	

14 Abstract

15	Here, we report the draft genome of Cyanobacterium sp. IPPAS strain B-1200 isolated from
16	Lake Balkhash, Kazakhstan, and characterized by the unique fatty acid composition of
17	membrane lipids enriched with myristic and myristoleic acids. The approximate genome size
18	is 3.4 Mb. The predicted number of coding sequences is 3119.
19	Cyanobacteria are the prolific source of various useful compounds, including fatty acids
20	suitable for biodiesel production (1). The cyanobacterial strain Cyanobacterium sp. IPPAS strain B-
21	1200 has been characterized by the unique fatty acid composition of the membrane lipids enriched
22	with myristic (30%), myristoleic (10%), palmitic (40%), palmitoleic (10%) acids (2). The strain was
23	able for growth intensively at temperatures ranging from 24 to 39°C. Listed advantages make this
24	strain a target candidate for production of high cetane number biodiesel.
25	Genomic DNA was isolated from cyanobacterial cells by incubation with saturated iodide
26	solution followed by lysozyme treatment and 2% SDS lysis at 70°C (3). Lysate was treated with
27	phenol/chloroform mixture for DNA purification. DNA libraries for sequencing were prepared
28	using Nextera XT and Ion Xpress kits. Sequencing was performed on MiSeq system with MiSeq
29	reagent kit v3 in 600-cycle paired-end format and Ion PGM with Hi-Q chemistry.
30	Genome was assembled using SPAdes 3.7.1 (4) and MIRA 4.0.2 software (5). The draft
31	genome assembly quality was analyzed by QUAST (6). For draft genome median coverage was
32	approximately 200x and N50 was 80222. Approximate genome size is 3.4 Mb, the average G+C
33	content was estimated as 37.7%.
34	Genome was annotated using automated NCBI PGAP. It contained 3119 genes in total with
35	2934 genes coding for proteins, 137 pseudo genes, 4 rRNA-coding sequences, 40 tRNAs, 4 non-
36	coding RNA. 2 CRISPR arrays have been found in the genome. Genome contained only one gene
37	for the acyl-lipid $\Delta 9$ - desaturase, <i>desC</i> , responsible for Δ^9 -dehydrogenation of C14- and C16-fatty
38	acids. This coincides with genomic data of the type-strain of this genus, Cyanobacterium stanierii
39	PCC 7202 (7). Therefore, Cyanobacterium sp. strain IPPAS B-1200 is an atypical representative of

2

40	cyanobacteria of Group 1 that containing only monounsaturated fatty acids in both sn-1 and sn-2
41	positions of membrane lipids (8).
42	Accession numbers: PRJNA318169 (for BioProject), SAMN04633587 (for BioSample),
43	KM502966.1 (GenBank 16S rRNA sequence), SUB1381918 (WGS submission), LWHC00000000
44	(PGAP file).
45	
46	ACKNOWLEDGEMENTS
47	The authors are grateful to Common use center "Biotechnology" of All-Russian Scientific Research
48	Institute of Agricultural Biotechnology (Moscow, Russia) for help in bioinformatic analysis.
49	FUNDING INFORMATION
50	This study was supported by grants from Russian Science Foundation (nos. 14-24-00020 and 14-
51	14-00904 to DAL and MAS); and by a grant from Ministry of Education and Science of Republic
52	of Kazakhstan to BKZ (no. 1582/GF4).
53	
54	REFERENCES
55	1. Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA. 2015.
56	Cyanofuels – biofuels from cyanobacteria: reality and perspectives. Photosynth Res 125:329-340.
57	doi: 10.1007/s11120-015-0103-31.
58	2. Sarsekeyeva FK, Usserbaeva AA, Zayadan BK, Mironov KS, Sidorov RA, Kozlova AY,
59	Kupriyanova EV, Sinetova MA, Los DA. 2014. Isolation and characterization of a new
60	cyanobacterial strain with a unique fatty acid composition. Adv Microbiol 4:1033-43.
61	3. Campbell WS, Laudenbach DE. 1995. Characterization of four superoxide dismutase genes
62	from a filamentous cyanobacterium. J Bacteriol 177:964-72.
63	4. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,

- 65 Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm and its
- 66 applications to single-cell sequencing. J Comput Biol 19:455-77.
- 67 5. Chevreux B, Wetter T, Suhai S. 1994. Genome sequence assembly using trace signals and
- additional sequence information. Comp Sci Biol: Proc GCB **99:**45-56.
- 69 6. Gurevich A., Saveliev V., Vyahhi N., Tesler G. 2013. QUAST: quality assessment tool for
- 70 genome assemblies. Bioinformatics **29:**1072-1075.
- 71 7. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de
- 72 Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M,
- 73 Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA. 2013.
- 74 Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.
- 75 Proc Natl Acad Sci USA **110**:1053-1058.
- 76 8. Los DA, Mironov KS. 2015. Modes of fatty acid desaturation in cyanobacteria: an update. Life
- **5**: 54-67.